Data-driven modeling of phase interactions between spontaneous MEG oscillations.
نویسندگان
چکیده
OBJECTIVE Synchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous measurements. This approach, however, does not elucidate the phase dynamics that underlies synchronization. For this, an explicit dynamical model is required. Based on the assumption that the recorded rhythms can be described as weakly coupled oscillators, we propose a method for characterizing their phase-interaction dynamics. METHODS We propose to model ongoing magnetoencephalographic (MEG) oscillations as weakly coupled oscillators. Based on this model, the phase interactions between simultaneously recorded signals are characterized by estimating the modulation in instantaneous frequency as a function of their phase difference. Furthermore, we mathematically derive the effect of volume conduction on the model and show how indices for strength and direction of coupling can be derived. RESULTS The methodology is tested using simulations and is applied to ongoing occipital-frontal MEG oscillations of healthy subjects in the alpha and beta bands during rest. The simulations show that the model is robust against the presence of noise, short observation times, and model violations. The application to MEG data shows that the model can reconstruct the observed occipital-frontal phase difference distributions. Furthermore, it suggests that phase locking in the alpha and beta band is established by qualitatively different mechanisms. CONCLUSION When the recorded rhythms are assumed to be weakly coupled oscillators, a dynamical model for the phase interactions can be fitted to data. The model is able to reconstruct the observed phase difference distribution, and hence, provides a dynamical explanation for observed phase locking.
منابع مشابه
Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain.
This paper presents a computationally efficient source estimation algorithm that localizes cortical oscillations and their phase relationships. The proposed method employs wavelet-transformed magnetoencephalography (MEG) data and uses anatomical MRI to constrain the current locations to the cortical mantle. In addition, the locations of the sources can be further confined with the help of funct...
متن کاملDynamics underlying spontaneous human alpha oscillations: A data-driven approach
Although the cognitive and clinical correlates of spontaneous human alpha oscillations as recorded with electroencephalography (EEG) or magnetoencephalography (MEG) are well documented, the dynamics underlying these oscillations is still a matter of debate. This study proposes a data-driven method to reveal the dynamics of these oscillations. It demonstrates that spontaneous human alpha oscilla...
متن کاملA new method to identify multiple sources of oscillatory activity from magnetoencephalographic data.
Identifying the sources of oscillatory activity in the human brain is a challenging problem in current magnetoencephalography (MEG) and electroencephalography (EEG) research. The fluctuations in phase and amplitude of cortical oscillations preclude signal averaging over successive sections of the data without a priori assumptions. In addition, several sources at different locations often produc...
متن کاملPhase-Amplitude Coupling in Spontaneous Mouse Behavior
The level of activity of many animals including humans rises and falls with a period of ~ 24 hours. The intrinsic biological oscillator that gives rise to this circadian oscillation is driven by a molecular feedback loop with an approximately 24 hour cycle period and is influenced by the environment, most notably the light:dark cycle. In addition to the circadian oscillations, behavior of many ...
متن کاملA Multimodal Perspective on the Composition of Cortical Oscillations
An expanding corpus of research details the relationship between functional magnetic resonance imaging (fMRI) measures and neuronal network oscillations. Typically, integrated electroencephalography and fMRI, or parallel magnetoencephalography (MEG) and fMRI are used to draw inference about the consanguinity of BOLD and electrical measurements. However, there is a relative dearth of information...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human brain mapping
دوره 32 7 شماره
صفحات -
تاریخ انتشار 2011